
Conceptual Design Phase

جلسه دهم- مبانی طراحی محیطی، نظریه ها و روشها اردیبهشت ماه 1398 ^{The} Integrative Design Guide to <mark>Green Building</mark>

Foreword by S. Rick Fedrizzi

REDEFINING THE PRACTICE OF SUSTAINABILITY

PAMELA MANG · BEN HAGGARD · REGENESIS

REGENERATIVE DEVELOPMENT AND DESIGN

7group and B 7group II JOHN BOECKER, SCOT HORS ANDREW LAU, MARCUS SHEFFER, and

A FRAMEWORK FOR EVOLVING SUSTAINABILITY

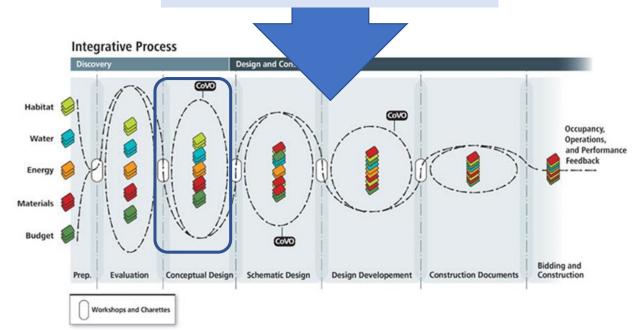
Introduction

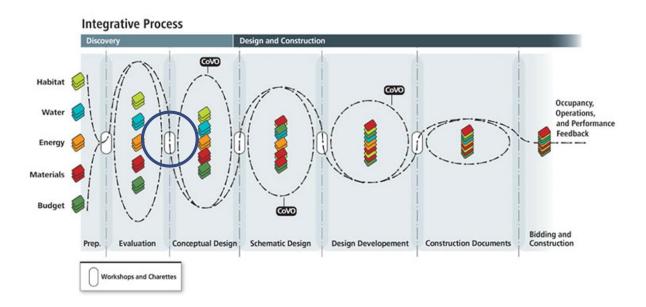
- Conceptual Design Charrette
- Third Research & Analysis Phase: Testing Conceptual design Ideas

MENTAL MODEL

Client, design, and building teams' mind-set, attitude, and will

PROCESS


Integrated, all parties engaged-system optimization through iterative analysis


TOOLS

Metrics, benchmarks, modeling programsanalytical methods for materials and costing

PRODUCTS/ TECHNOLOGIES

Things and stuff, technologies and techniques

Conceptual Design Workshop

Stage A.4

Workshop No. 2: Conceptual Design Exploration

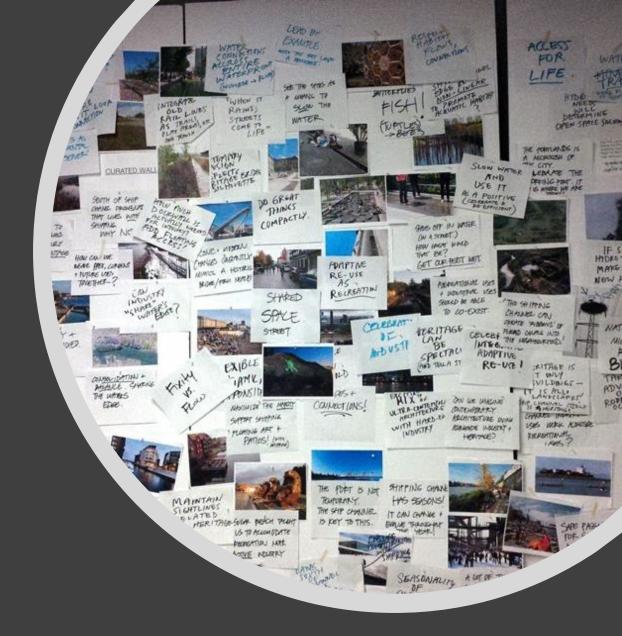
A.4.1 Workshop No. 2: Activities

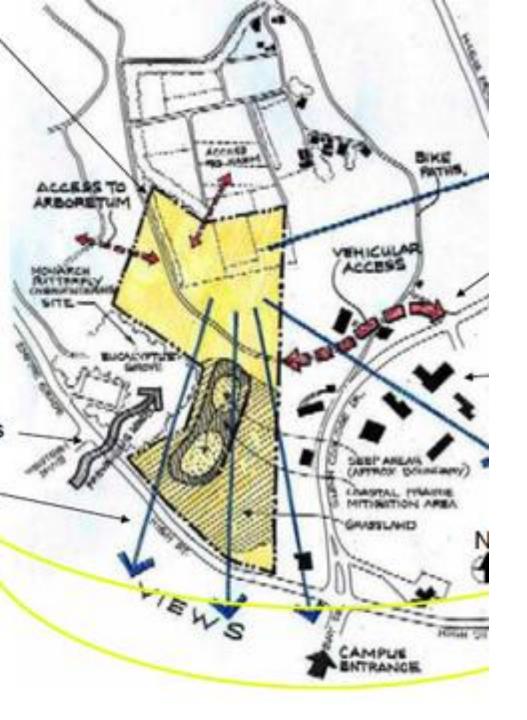
- Assess the findings from Stage A.3 (Research and Analysis) of the four key subsystems:
- Habitat
- Water
- Energy
- Materials
- Generate conceptual site and building design concepts from:
 - Touchstones and Principles
 - Site forces
 - Community and watershed living-system patterns
- Functional program
- Breakout group working sessions
- Confirm alignment with Touchstones, Principles, Metrics, Benchmarks, and Performance Targets
- Review integrative cost-bundling studies in progress
- Review and adjust the Process Road Map
- Provide time for reflection and feedback from client and team members
- Commissioning: Review Owner's Project Requirements (OPR)

A.4.2 Principles and Measurement

- Document adjustments to Performance Targets to reflect input from Workshop No. 2
- Commissioning: Adjust OPR to reflect input from Workshop No. 2

A.4.3 Cost Analysis


Update any required integrative cost-bundling templates to reflect input from Workshop No. 2


A.4.4 Schedule and Next Steps

- Update Integrative Process Road Map to reflect input from Workshop No. 2
- Distribute Workshop No. 2 Report

Generate Conceptual Design Concepts from:

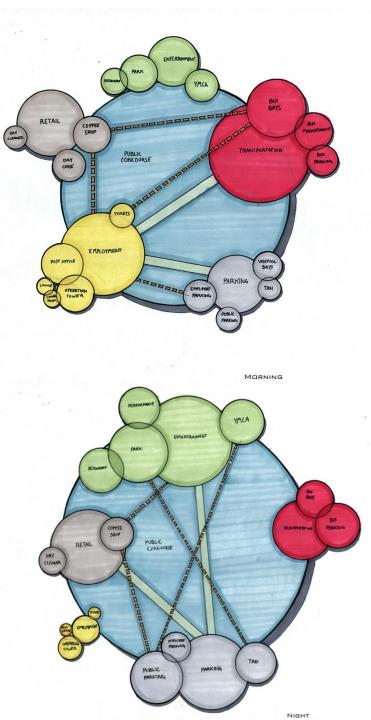
- Touchstones and Principles
- Site forces
- Community and watershed living system patterns
- Functional program
- Breakout group working sessions

Site Forces

- Solar orientation
- Prevailing winds
- Pedestrian and/or vehicular circulation,
- Public transportation access
- Utilities access
- Topography
- Stormwater flows
- Views
- Noise sources
- Neighborhood connections

Community and watershed Liv patterns

- Have a team member (e.g. system ecologist, permaculturist, biologist, ...) present to the team an assessment of site and neighborhood interrelationships.
- Try to understand the essence of the place:
 - What gives it vitality?
 - Viability?
 - What is the source of its potential to evolve?
 - Elicit from people what they love about where they live.
- "Biologically, life is not maintenance or restoration of equilibrium but is essentially maintenance of disequilibria....Reaching equilibrium means death and consequent decay...."

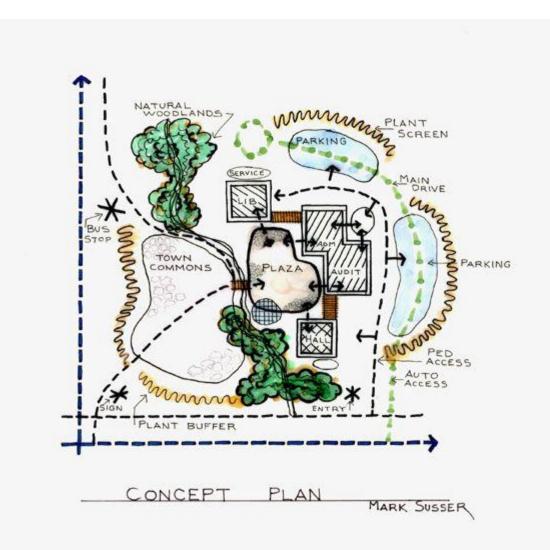

Ludwig von Bertalanffy (1968), General System Theory: Foundations, Developmnet, Applications

Functional Program

- The above research and discoveries often inform and generate adjustments to aspects of the project's functional program.
- e.g. similar occupancy schedules for several programmed spaces may suggest groupings of functions into adjacent or consolidated mechanical zones to improve the efficiency of both distribution components and operations.
- A group exercise that focuses on any potential adjustments to the functional program can be useful.
- The exercise can help clarify the functional "unknowns" or to refine the entire program.
- Defining the functional program collectively, can benefit all project team members in terms of reaching a deeper understanding of the project's purpose.

Breakout Group Working Sessions

What you need:


- Tracing paper, markers, colored pencils,....
- Project's touchstones
- Principles and performance targets
- Information from the site forces exercise, and functional program review

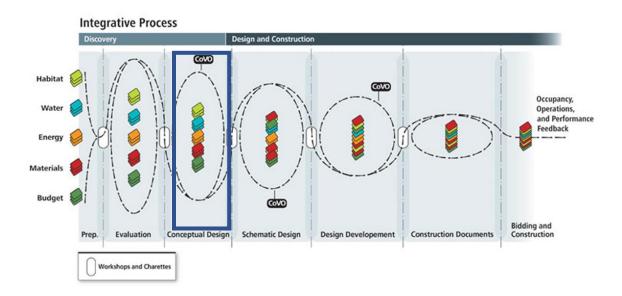
Issues to consider:

- Site connections to the neighborhood
- Contextual remedies
- Functional and program components (in large chunks)
- Strategies aimed at achieving sustainability targets
- Parking, transportation, and service locations and solutions
- Image and character

Breakout Group Presentations

- The outcome should be a single consolidated sketch from each small group for presentation to the large group.
- This site plan sketch should clearly depict the overarching design idea and identify all key strategies, proposed site solutions, and chunks of program elements.
- Solicit reflections from the larger group.
- "green hat"/ "red hat" exercise.
- How the "want-to-keep" concepts can best work together to create more whole solutions.
- Second round of breakout groups can be followed.

Other Workshop Activities


- Confirm alignment with Touchstone, Principles, Metrics, Benchmarks, and Performance Targets.
- Review/adjust integrative cost-bundling studies in progress.
- Provide time for reflection and feedback from client and team members.
- Commissioning: Review/adjust Owner's Project Requirements (OPR)
- Update integrative Process Road Map to reflect input from Workshop No. 2.

INFRASTRUCT CHARRETTE se for Green Infrastructure Investment in Ye

Distribute Workshop No. 2 Report

- Meeting agenda
- Lists of attendees
- Photos of activities
- Site forces exercise sketch
- Images of all conceptual sketches
- Meeting notes recording additional findings, results, reflections, "what to keep", etc.
- Touchstones, Principles, Metrics, Benchmarks, Performance Targets- Including updated LEED checklist, if applicable
- Updated integrative cost-bundling template
- Process Road Map spreadsheet of schedule and tasks
- Next steps

Stage A.5

Research and Analysis: Testing Conceptual Design Ideas

A.5.1 Research and Analysis Activities: Explorations within individual disciplines and smaller related groups

- Test Conceptual Design schemes from Workshop No. 2 within the realities of the program and guiding principles relative to the four key subsystems:
 - Habitat
 - Water
 - Energy
 - Materials
- Coalesce findings and bring analysis to a reasonable conclusion before beginning the Schematic Design phase

A.5.2 Principles and Measurement

- Confirm and solidify Metrics, Benchmarks, and Performance Targets
- Commissioning: Develop Basis of Design (BOD)

A.5.3 Cost Analysis

Put a price tag on every strategy and subsystem, then aggregate them into integrated cost bundles

A.5.4 Schedule and Next Steps

- Update Integrative Process Road Map in preparation for Workshop No. 3
- Prepare Agenda for Workshop No. 3

Research & Analysis: Testing Conceptual Design Ideas

Test Conceptual Design Schemes within the realities of the program and guiding principles relative to the four key subsystems

- More detailed analysis of the four key subsystems to test the feasibility of the ideas in terms of meeting:
 - Programmatic requirements
 - Budget
 - Principles
 - Performance targets
- Includes small cross-disciplinary group sessions
- Informed by using various tools

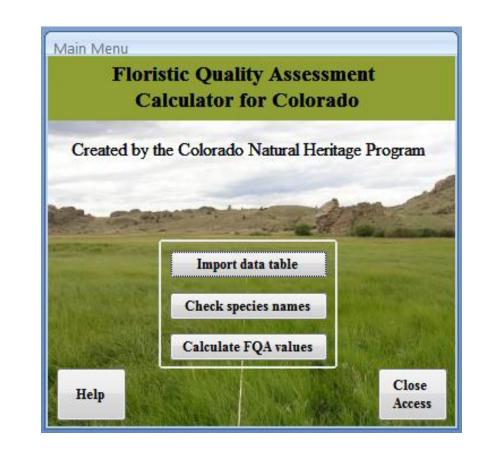
Habitat (biotic systems other than human)

• Look for multiple ways to use a unit of water to support life before it leaves the site:

- Irrigation
- Habitat for constructed wetlands
- Vegetated roof(s)
- Groundwater recharge
- On-site pond
- Rain gardens and bioswales
- Investigate planting materials appropriate to the microclimates that may result from the design of the building itself.

• Look for opportunities for restoring plant habitat in conjunction with integrating stormwater management opportunities.

Habitat (Biotic systems other than human)- Tools (examples)

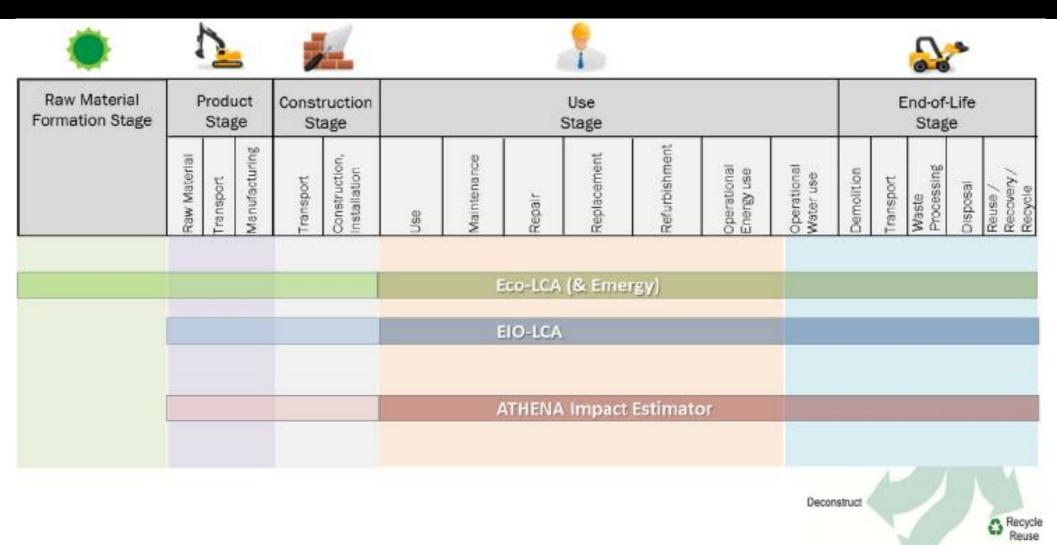

• Floristic Quality Assessment

-Coefficients of conservatism (C value) range from 0 to 10 and represent an estimated probability that a plant is likely to occur in a landscape relatively unaltered from what is believed to be a pre-settlement condition.

-Floristic Quality Index (FQI): $\bar{C}\sqrt{n}$

n: total number of species

- Observation of living systems
- -data or facts alone, do not reveal patterns
- Consolidated Inventories of soil, plant species, animal habitat, microclimates, and evolutionary interaction of people in the project's place over time.


Habitat (Human)

Example of issues to be tested and examined in more detail:

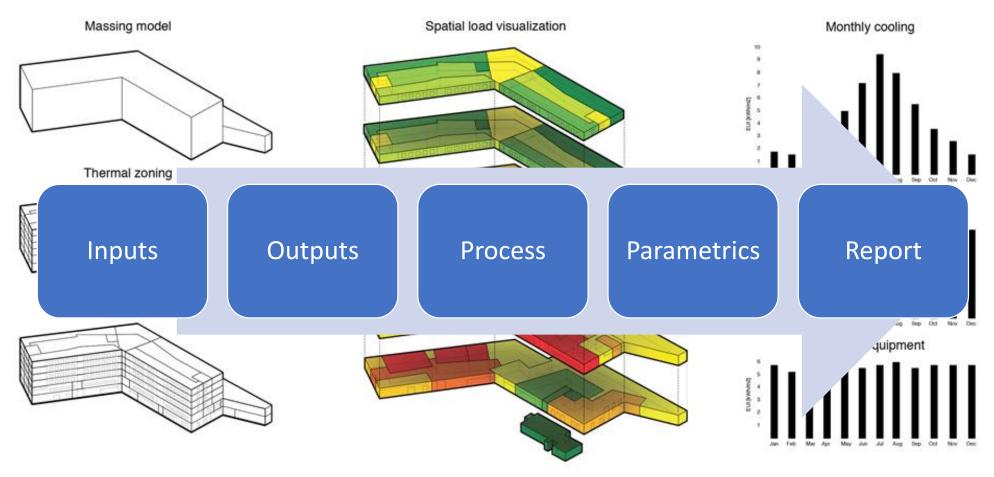
- Indoor air quality
- Ventilation
- Thermal comfort
- Lighting
- Acoustics
- Odor
- Vistas and views
- Inter-relationships between the project and the community
- Toxicants in materials (extraction, production, use, and disposal)

Habitat (Human)- Tools (Examples)- Toxicants

Landfill

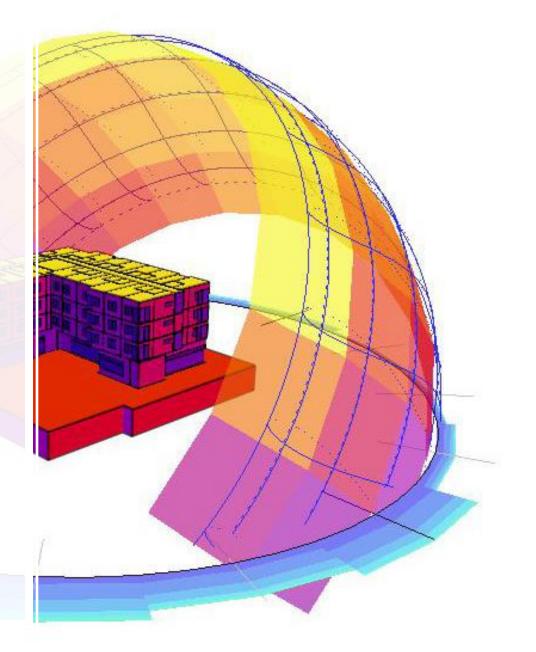
Energy

Modeling runs to evaluate the effectiveness of individual strategies.


Determine an appropriate baseline for comparison.

Reduce, Reduce, Reduce!

Prioritize Energy-efficiency measures (EEMs)


HVAC system options should be evaluated after all loads have been reduced via the most promising combination of EEMs.

Energy Simulation Tools

* Energy Modeling- Inputs

- ¹⁸ Envelope data (U value and thermal mass inputs)
 - Areas of floor, wall, roof, and glazing, etc, by zone and orientation.
 - U-value, Tvis, and SHGC for glazing
 - Internal gains such as people and equipment
 - Lighting loads and schedules
 - Weather data such as insolation, Heating degree days, cooling degree days, wind rose charts
 - Seasonal design temperatures
 - Indoor conditions- occupied and unoccupied temperature set points
 - Utility rates
 - Ventilation quantities and schedules
 - Ventilation equipment recovery efficiency
- Infiltration assumption
- Distribution equipment types and efficiencies, including fans and pumps, economizer settings,
- HVAC equipment type, efficiencies, and details regarding settings.

00

41

82 42

32

28

24

20 .049

16

Energy Modeling-Outputs Monthly & annual energy consumption for the following end uses:

Space heating

Space cooling

Fans and pumps

Domestic hot water (DHW)

Interior lighting

Exterior lighting

Equipment, including plug loads Other ancillary or miscellaneous loads Heating and cooling loads by building assembly type

Energy Modeling Process

Review the outputs to see how they compare with experience and data from actual buildings of similar occupancy (such as energy use data in Target finder).

We want to convince ourselves fist the model is realistic and then we want to be able to design parametric runs to look at variations. Metrics Comparison for Your Property & Your Target

Metric	Baseline (May 2011)	Current (May 2013)	Target*	Median Property*	
ENERGY STAR score (1-100)	72	67	75	50	
Source EUI (kBtu/ft ²)	210.7	225.4	204.1	276	
Site EUI (kBtu/ft²)	119.6	139.7	126.5	171.1	
Source Energy Use (kBtu)	24073025.7	25750203.4	23315771.7	31529412	
Site Energy Use (kBtu)	13657396.1	15954800.9	14450980.5	19545950.7	
Energy Cost (\$)	0	0	0	0	
Total GHG Emissions (MtCO2e)	1439.5	1583.4	1433.78738412	1939.7964222	

* To compute the metrics at the target and median levels of performance, we will use the fuel mix associated with your property's current energy use.

Energy modeling Parametrics- Report				erguson Elem 6 Modeling Re		ary						
alametrics- report	Building	g Energy End	luse Summar	y for Individua	al Energy Ef	ficiency Measu	ires (EEMs)					
	Base Building	EEM-1	EEM-2	EEM-3	EEM-4	EEM-5	EEM-6	EEM 7	EEM 8			
Individual EEM Design Runs	ASHRAE 90.1- 2004 Appendix G w/ modified HVAC	R20 Roof	R30 Roof	Triple Pane Windows	Reduced Lighting LPD=0.75 W/sqft	LPD=0.75 w/ Daylight On/Off Controls	Increased Wall Insulation to overall Rt=18.5	Slab on Grade Edge Insulation	Elim Bridge & South Stair Glazing			
			Es	timated Operatin	g Costs							
Electric												
Gas	\$68,210	\$67,155	\$65,771	\$55,850	\$71,150	\$71,620	\$63,631	\$46,499	\$65,424			
Total	\$138,821	\$137,627	\$135,609	\$128,211	\$132,364	\$130,266	\$134,590	\$118,082	\$134,338			
Cost/SqFt	\$1.56	\$1.55	\$1.52	\$1.44	\$1.49	\$1.46	\$1.51	\$1.33	\$1.51			
				Consumptio	n							
Site (kBtu / SqFt / Yr)	91.4	90.6	89.1	80.9	90.6	90.2	87.5	71.2	87.8			
			Bu	uilding Electric Us	e (kWh)							
Total	726,722	730,864	725,871	754,987	634,267	610,662	734,861	730,443	701,324			
			B	uilding Gas Use (1	herms)							
Total	56,587	55,704	54,547	46,290	59,033	59,424	52,772	38,497	54,265			
				EEM Econom	cs							
EEM Savings	NA	\$1,194	\$3,212	\$10,610	\$6,457	\$8,555	\$4,231	\$20,739	\$4,483			
EEM Descriptions												
EEM 1 - ASHRAE Baseline but	with R20 roof insulat	ion										
EEM 2 - ASHRAE Baseline but	with R30 roof insulat	ion										
EEM 3 - ASHRAE Baseline but	with Triple pane wind	dows, Pella Desigi	ner Series LowE I	G w/ argon w/ 3rd Lo	wE pane, U=0.1	6, SHGC=0.37, Vt=0.	.61					
EEM 4 - ASHRAE Baseline but	with reduced lighting	power density (LF	PD) to 0.75 W/sqft									
EEM-5 - ASHRAE Baseline but	with reduced lighting	power density (Lf	PD) to 0.75 W/sqft	and Daylighting On	Off controls for 1	/3 of lights in perimet	er spaces					
EEM-6 - ASHRAE Baseline but	with Wall insulation i	ncreased such the	at the overwall wall	R=18.5								
EEM-7 - ASHRAE Baseline but	with R10 24" vertical	and horizontal ed	ge insulation adde	d to slab on grade								
EEM-8 - ASHRAE Baseline but	eliminating all of the	bridge windows a	nd 75% of the wind	lows in the South St	airwell.							

Figure 5-49 These sample parametric energy modeling runs analyzed individual energy-efficiency measures (EEMs) to evaluate energy savings relative to a baseline (see also Figure 5-50). Image courtesy of Sheila Sagerer.

Energy modeling Report- Cumulative effects of combination of chosen EEMs on energy savings

Building Energy End	Combination		measure (EEM
	Base Building	EEM Combo 1	EEM Combo 2
Combined EEM Design Runs	ASHRAE 90.1-2004 Appendix G w/ modified HVAC	EEM 2, 3, 5, 6, 7, 8 w/ modified HVAC	EEM 2, 3, 5, 6, 7, 8 groundsource heatpumps & He recovery on ded 0
	Estimated Oper	ating Costs	
Electric	\$70,611	\$55,864	\$64,652
Gas	\$68,210	\$27,188	\$1,280
Total	\$138,821	\$83,052	\$65,932
Cost/SqFt	\$1.56	\$0.93	\$0.74
	Building Energy	Use (MBtus)	
Site (kBtu / SqFt / Yr)	91.4	46.5	26.7
	Building Electri	c Use (kWh)	
Total	726,722	555,385	671,554
	Building Gas U	se (Therms)	
Total	56,587	22,409	836
	EEM Econ	omics	
EEM Savings	NA	\$55,769	\$72,889
EEM Descriptions			
Baseline building uses ASHRAE	design as described on	"Baseline Input Summary"	tables.
EEM Combo 1 - ASHRAE build	•		
Roof, Pella Designer Series Trip W/sqft, Daylight On/Off Control: 24" vertical and horizontal edge windows in South Stainvell	ble Pane Windows U=0.1 s for 1/3 of lights in perim	6, SHGC=0.37, VLt=0.61, L eter spaces, wall insulation	PD reduced to 0.75 to overall Rt=18.5, F

VLt=0.61, LPD reduced to 0.75 W/sqft, Daylight On/Off Controls for 1/3 of lights in perimeter spaces, wall insulation to overall Rt=18.5, R10 24" vertical and horizontal edge insulation, and eliminating all windows in

bridge connector and 75% of windows in South Stairwell

Energy-Tools

Energy-10	
E-Quest	
VisualDOE	
HAP	
TRACE	

EnergyPlus (BLAST+DOE-2)

TRaNsient Systems Simulation (TRANSYS)

Impact Estimator Sample Building #1 (4.87 Kilo Tonnes)

Columns and Beams (427.88 Tonnes)

Floors (1.1 Kilo Tonnes)

Roofs (19.41 Tonnes)

- Foundations (232.67 Tonnes)
- Walls (3.1 Kilo Tonnes)
- G Extra Materials (13.88 KiloGrams) Sample Building #2 (2.13 Kilo Tonnes)

of 1 🕨 🕅 🐗 🛞 🚱 🚔 🔲 🖳 💐 🛛 100% 4 1 Find | Next

Summary Measure Table By Life Cycle Stages

Project Sample Building #1

		Manufacturing			Construction			Maintenance			End - Of - Life		Operating Ene		
Summary Measures	Material	Transportation	Total	Material	Transportation	Total	Marial	Transportation	Total	Material	Transportation	Total	Annual	Total	
Fossil Fuel Consumption (MJ)	3.33e+07	1.53e+06	3.48e+07	1.56e+06	1.80e+06	3.36e+06	8.93e+06	6.20e+05	9.55e+06	1.92e+06	6.73e+05	2.59e+06	6.04e+06	5.98e+	
Global Warming Potential (kg CO2 eq)	3.32e+06	8.80e+04	3.41e+06	1.07e+05	1.30e+05	2.37e+05	9.96e+05	4.57e+04	1.04e+06	1.29e+05	5.18e+04	1.81e+05	3.52e+05	3.48e+	
Acidification Potential (moles of H+ eq)	1.36e+06	3.58e+04	1.40e+06	5.12e+04	4.20e+04	9.33e+04	7.28e+05	1.46e+04	7.43e+05	6.93e+03	1.59e+04	2.28e+04	1.43e+05	1.41e+	
HH Criteria (kg PM10 eq)	2.33e+04	4.69e+01	2.34e+04	4.24e+01	5.46e+01	9.70e+01	2.25e+04	1.90e+01	2.25e+04	9.29e+01	2.06e+01	1.14e+02	5.00e+02	4.95e+	
Eutrophication Potential (kg N eq)	1.75e+03	3.91e+01	1.79e+03	4.96e+01	4.57e+01	9.53e+01	2.52e+02	1.59e+01	2.68e+02	6.95e+00	1.50e+01	2.20e+01	1.86e+01	1.84e+	
Ozone Depletion Potential (kg CFC-11 eq)	1.52e-02	3.59e-06	1.52e-02	7.55e-07	5.20e-06	5.96e-06	4.41e-03	1.82e-06	4.41e-03	5.64e-06	2.06e-06	7.70e-06	2.97e-07	2.94e-	
Smog Potential (kg O3 eq)	3.24e+05	1.98e+04	3.44e+05	2.78e+04	2.25e+04	5.03e+04	1.02e+05	7.81e+03	1.10e+05	6.74e+02	8.44e+03	9.12e+03	1.81e+03	1.79e+	

Page 1 of 1

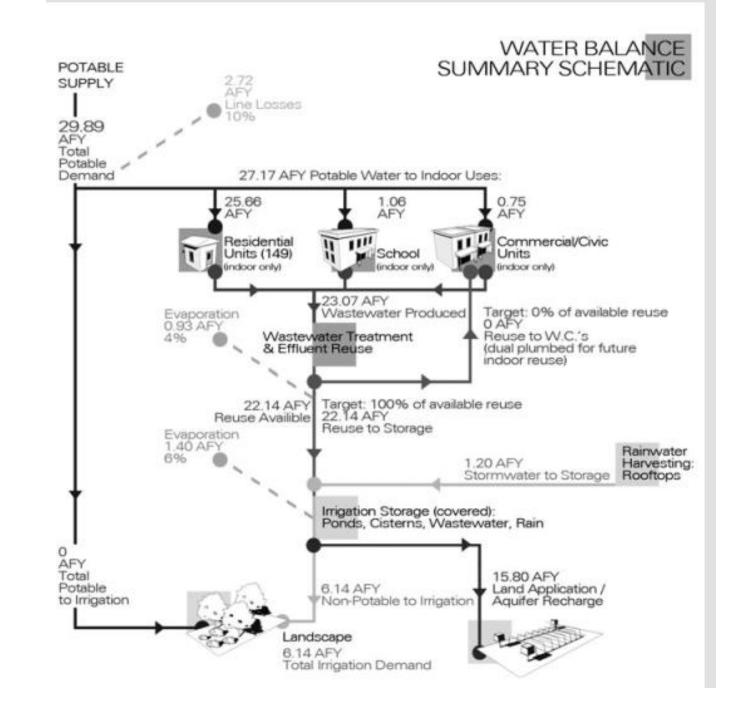
Materials-Tools (example)

111

Athena **Impact Estimator** for Buildings

EcoCalculator

Athena



Athena **EcoCalculator** for Residential Assemblies

Water-Tools (example)

Water-balancing diagrams

DEP Norristown Office Building: Monthly Stormwater Harvesting Predictions

sq. ft.

sq. ft.

percent

percent

23,629

850

95

50

New Hard Roof Area - Total

Green Roof Area - Total

Hard Roof Run-off

Green Roof Run-off

Hard Roof Default Run-off Coeff.	95.00%
Stormwater Reused	41.47%
Adjusted Hard Roof Run-off Coeff.	53.53%

Water-Tools (example)-^{Water-balancing} spreadsheets

Daily Daily Annu	al Toilet Demand Toilet Demand Hose Bibb dema al Work days n Usable Storag	nd	250,000 1,000 50 250 4,250	gal. gal,		hose bibb at 5 gg nal capacity x 85				nd of 1,050 gal/	day x 4 = 4,200 g	gal.		
	Month	Average Rain Inches	Rain cu ft	Rain gal.	Green Roof stormwater gal/month	Hard Roof stormwater gal/month	Total Roof stormwater	Average Work Days	Daily Toilet Demand gal/day	Daily Hose Bibb Demand gal/day	Monthly Toilet Demand gal/month	Monthly Hose Bibb Demand gal/month	Total Greywater Demand gal/month	% Stormwater Recovered
Jan	Hard Roof Green Roof	3.3	6,498 234	48,605	gaunonur 874	46,175	47,049	the second se	1,000	gavoay 50	20,833	1,042	21,875	46,49
Feb	Hard Roof Green Roof	3	5,907 213	44,186	795	41,977	42,772	20.83	1,000	50	20,833	1,042	21,875	51.14
Mar	Hard Roof Green Roof	3.5	6,892 248	51,551 1,854	927	48,973	49,900		1,000	50	20,833	1,042	21,875	43.84
Apr	Hard Roof Green Roof	3.7	7,286 262	54,496 1,960	980	51,772	52,752		1,000	50	20,833	1,042	21,875	
May	Hard Roof Green Roof	4.2	8,270 298	61,861 2,225	1,113	58,768	59,880	20.83	1,000	50	20,833	1,042	21,875	36.53
Jun	Hard Roof Green Roof	3.6	7,089 255	53,023 1,907	954	50,372	51,326	20.83	1,000	50	20,633	1,042	21,875	42.62
lul	Hard Roof Green Roof	4.5	8,861 319	66,279 2,384	1,192	62,965	64,158	20.83	1,000	50	20,833	1,042	21,875	34.10
Aug	Hard Roof Green Roof	4.1	8,073 290	60,388 2,172	1,086	57,368	58,455		1,000	50	20,833	1,042	21,875	
Sept	Hard Roof Green Roof	4.1	8,073 290	60,388 2,172	1,086	57,368	58,455	20.83	1,000	50	20,833	1,042	21,875	37.42
Oct	Hard Roof Green Roof	3	5,907 213	44,186 1,590	795	41,977	42,772		1,000	50	20,833	1,042	21,875	
Nov	Hard Roof Green Roof	3.8	7,483 269	55,969 2,013	1,007	53,171	54,177		1,000	50	20,833	1,042	21,875	
Dec	Hard Roof Green Roof	3.6	7,089 255	53,023 1,907	954	50,372	51,326	20.83	1,000	50	20,833	1,042	21,875	42.62
	Annual Totals Annual totals	44,4	90,572	677,481	11,762	621,258	633,021	250			250,000	12,500	262,500	41.47
ad	justed for runoff coefficient				5,881	590,195	596,077							

Confirm and solidify Metrics, Benchmarks, and Performance Targets

- LEED targets may not always be appropriate for a project's goals.
- Dive into the details embedded within the benchmarks by LEED defined.
- e.g. baseline parameters identified by ASHRAE 90.1 , Appendix G.

Commissioning: Develop Basis of Design (BOD) The BOD is intended to provide a technical narrative explanation of the design parameters and quantified performance objectives established for the project.

Sample Basis of Design Outline

The following sample BOD outline, when tailored to the specifics of a project, provides a framework for documenting the technical design parameters and quantified performance objectives.

1. Primary design assumptions

- a. Space use based on OPR
- b. Redundancy level
- c. Diversity issues
- d. Climatic conditions
- e. Space zoning
- f. Occupancy types and schedules
- g. Special requirements for indoor environmental conditions

2. Standards

- a. General building codes, guidelines, regulations
- b. LEED related additional requirements (i.e., energy-use reduction, water-use reduction, etc.)

- c. Industry-related requirements (i.e., hospital, information technology (IT), manufacturing standards)
- 3. Narrative descriptions and performance requirements (chronological descriptions of the main systems as they evolve over the phases of project design and construction)
 - a. Architectural systems
 - b. HVAC systems
 - c. Building automation systems
 - d. Lighting systems
 - e. Water systems
 - f. Power systems (normal/emergency, special metering)
 - g. Communications systems
 - h. Information technology systems
 - i. Security and life-safety systems

Cost Analysis

Put a price tag on every strategy and subsystem, then aggregate them into integrated cost bundles.

Certain strategies are essential to making critical path design decisions, while others can wait! Questions to Consider for writing the Reflections:

ESTABLISH INITIAL BENCHMARKS, AND PERFORMANCE TARGETS FOR ANY OF THE FOUR KEY SUBSYSTEMS IN YOUR STUDIO PROJECT.

WHAT IS THE ESSENCE OF PLACE IN TALESH? TRY TO DESCRIBE IT IN ONE WORD!

Preparation Reading for Next Class:

Subject:

Schematic Design Phase in IDP process

Foreword by S. Rick Fedrizzi President, CEO, and Founding Chair of the U.S. Green Ruilding Council

The Integrative Design Guide to Green Building

7group and Bill Reed

Zgreep is JOHN BOECKER, SCOT HORST, TOM KEITER ANDREW LAU, MARCUS SHEFFER, and BRIAN TOEVS